Multi-Phase PLL Clock Buffer

Features

2.5 V or 3.3 V operation

■ Split output bank power supplies
■ Output frequency range: 6 MHz to 200 MHz
50 ps typical matched-pair Output-output skew
50 ps typical Cycle-cycle jitter
49.5/50.5\% typical output duty cycle

Selectable output drive strength
Selectable positive or negative edge synchronization
Eight LVTTL outputs driving 50Ω terminated lines
LVCMOS/LVTTL over-voltage-tolerant reference input
■ Phase adjustments in $625-/ 1250$-ps steps up to $\pm 7.5 \mathrm{~ns}$
■ $2 \mathrm{x}, 4 \mathrm{x}$ multiply and (1/2)x, (1/4)x divide ratios
■ Spread-Spectrum compatible
■ Industrial temp. range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
■ 32-pin TQFP package

Description

The CY7B9950 RoboClock ${ }^{\circledR}$ is a low voltage, low power, eight-output, 200 MHz clock driver. It features output phase programmability which is necessary to optimize the timing of high performance computer and communication systems.
The user can program the phase of the output banks through $\mathrm{nF}[0: 1]$ pins. The adjustable phase feature allows the user to skew the outputs to lead or lag the reference clock. Any one of the outputs can be connected to the feedback input to achieve different reference frequency multiplications, and divide ratios and zero input-output delay.
The device also features split output bank power supplies, which enable the user to run two banks (1Qn and 2Qn) at a power supply level different from that of the other two banks (3Qn and 4Qn). Additionally, the three-level PE/HD pin controls the synchronization of the output signals to either the rising, or the falling edge of the reference clock and selects the drive strength of the output buffers. The high drive option (PE/HD = MID) increases the output current from $\pm 12 \mathrm{~mA}$ to $\pm 24 \mathrm{~mA}(3.3 \mathrm{~V})$.

Logic Block Diagram

CY7B9950

Pinouts

Figure 1. Pin Diagram - 32 Pin TQFP package Top view

Table 1. Pin Definitions

Pin	Name	IO $^{[1]}$	Type	Description
29	REF	I	LVTTL/LVCMOS	Reference Clock Input.
13	FB	I	LVTTL	Feedback Input.
27	TEST	I	Three-level	When MID or HIGH, disables Phase-locked Loop (PLL) outputs of Bank 1 and Bank 2. REF also goes to outputs of Bank 3 and Bank 4 through output dividers K and M. Set LOW for normal operation.
22				

Device Configuration

The outputs of the CY7B9950 can be configured to run at frequencies ranging from 6 to 200 MHz . Banks 3 and 4 output dividers are controlled by $3 \mathrm{~F}[1: 0]$ and $4 \mathrm{~F}[1: 0]$ as indicated in Table 2 and Table 3, respectively.

Table 2. Output Divider Settings - Bank 3

3F[1:0]	K - Bank3 Output Divider
LL	2
HH	4
Other $^{[4]}$	1

Table 3. Output Divider Settings - Bank 4

4F[1:0]	M - Bank4 Output Divider
LL	2
Other $^{[4]}$	1

The three-level FS control pin setting determines the nominal operating frequency range of the divide-by-one outputs of the device. The CY7B9950 PLL operating frequency range that corresponds to each FS level is given in Table 4 on page 4.

[^0]Table 4. Frequency Range Select

FS	PLL Frequency Range
L	24 to 50 MHz
M	48 to 100 MHz
H	96 to 200 MHz

The selectable output skew is in discrete increments of time units $\left(\mathrm{t}_{\mathrm{u}}\right)$. The value of t_{U} is determined by the FS setting and the maximum nominal frequency. The equation used to determine
the t_{U} value is: $t_{U}=1 /\left(f_{\text {NOM }} \times M F\right)$, where MF is a multiplication factor, which is determined by the FS setting as indicated in Table 5.

Table 5. MF Calculation

FS	MF	$\mathbf{f}_{\text {NOM }}$ at which $\mathbf{t}_{\mathbf{U}}$ is $\mathbf{1 . 0} \mathbf{~ \mathbf { n s } (\mathbf { M H z })}$
L	32	31.25
M	16	62.5
H	8	125

Table 6. Output Skew Settings

nF[1:0]	Skew (1Q[0:1],2Q[0:1])	Skew (3Q[0:1])	Skew (4Q[0:1])
$\mathrm{LL}^{[5]}$	$-4 t_{U}$	Divide By 2	Divide By 2
LM	$-3 t_{U}$	$-6 t_{U}$	v6tu
LH	$-2 \mathrm{t}_{U}$	$-4 t_{U}$	$-4 t_{U}$
ML	$-1 t_{U}$	$-2 \mathrm{t}_{\mathrm{U}}$	v2tu
MM	Zero Skew	Zero Skew	Zero Skew
MH	$+1 t_{U}$	$+2 t_{u}$	$+2 \mathrm{t}_{\mathrm{u}}$
HL	$+2 \mathrm{t}_{\mathrm{U}}$	$+4 \mathrm{t}_{\mathrm{U}}$	$+4 \mathrm{t}_{u}$
HM	$+3 \mathrm{t}_{\mathrm{u}}$	$+6 \mathrm{t}_{\mathrm{U}}$	$+6 \mathrm{t}_{\mathrm{u}}$
HH	$+4 \mathrm{t}_{u}$	Divide By 4	Inverted ${ }^{[6]}$

In addition to determining whether the outputs synchronize to the rising or the falling edge of the reference signal, the 3-level PE/HD pin controls the output buffer drive strength as indicated in Table 7.

The CY7B9950 features split power supply buses for Banks 1 and 2, Bank 3 and Bank 4, which enables the user to obtain both 3.3 V and 2.5 V output signals from one device. The core power supply (VDD) must be set a level that is equal or higher than on any one of the output power supplies.

Table 7. PE/HD Settings

PE/HD	Synchronization	Output Drive Strength ${ }^{[7]}$
L	Negative	Low Drive
M	Positive	High Drive
H	Positive	Low Drive

Governing Agencies

The following agencies provide specifications that apply to the CY7B9950. The agency name and relevant specification is listed below.

Table 9. Governing Agencies and Specifications

Agency Name	Specification
JEDEC	JESD 51 (Theta JA) JESD 65 (Skew, Jitter)
IEEE	1596.3 (Jitter Specs)
UL-194_V0	94 (Moisture Grading)
MIL	883E Method 1012.1 (Therma Theta JC)

Table 8. Power Supply Constraints

\mathbf{V}_{DD}	$\mathbf{V}_{\mathrm{DDQ1}}{ }^{[8]}$	$\mathbf{V}_{\mathrm{DDQ} 3}{ }^{[8]}$	$\mathbf{V}_{\mathrm{DDQ4}}{ }^{[8]}$
3.3 V	3.3 V or 2.5 V	3.3 V or 2.5 V	3.3 V or 2.5 V
2.5 V	2.5 V	2.5 V	2.5 V

Notes:

5. LL disables outputs if TEST $=$ MID and $s O E \#=\mathrm{HIGH}$.
6. When $4 \mathrm{Q}[0: 1]$ are set to run inverted (HH mode), sOE\# disables these outputs HIGH when PE/HD = HIGH or MID and sOE\# disables them LOW when PE/HD = LOW.
7. Please refer to "DC Parameters" section for $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$ specifications.
8. $\mathrm{V}_{\mathrm{DDQ1/3/4}}$ must not be set at a level higher than that of V_{DD}. They can be set at different levels from each other, e.g., $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DDQ}}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DDQ4}}=2.5 \mathrm{~V}$.

Absolute Maximum Conditions

Parameter	Description	Condition	Min	Max	Unit
V_{DD}	Operating Voltage	Functional @ 2.5V $\pm 5 \%$	2.375	2.625	V
$\mathrm{~V}_{\mathrm{DD}}$	Operating Voltage	Functional @ 3.3V $\pm 10 \%$	2.97	3.63	V
$\mathrm{~V}_{\mathrm{IN}(\mathrm{MIN})}$	Input Voltage	Relative to V_{SS}	$\mathrm{V}_{\mathrm{SS}}-0.3$	-	V
$\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}$	Input Voltage	Relative to V_{DD}	-	$\mathrm{V}_{\mathrm{DD}}+0.3$	V
$\mathrm{~T}_{\mathrm{S}}$	Temperature, Storage	Non-functional	-65	+150	${ }^{\circ} \mathrm{C}$
T_{A}	Temperature, Operating Ambient	Functional	-40	+85	${ }^{\circ} \mathrm{C}$
T_{J}	Temperature, Junction	Functional	-	155	${ }^{\circ} \mathrm{C}$
$\varnothing_{\mathrm{JC}}$	Dissipation, Junction to Case	Mil-Spec 883E Method 1012.1	-	42	${ }^{\circ}{ }^{\circ} \mathrm{C} / \mathrm{W}$
$\varnothing_{\mathrm{JA}}$	Dissipation, Junction to Ambient	JEDEC (JESD 51)	-	105	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{ESD}_{\mathrm{HBM}}$	ESD Protection (Human Body Model)	MIL-STD-883, Method 3015	2000	-	V
$\mathrm{UL}-94$	Flammability Rating	At 1/8 in.		$\mathrm{V}-0$	
MSL	Moisture Sensitivity Level		Manufacturing Testing	1	
$\mathrm{~F}_{\mathrm{IT}}$	Failure in Time		10	ppm	

DC Electrical Specifications at 2.5V

Parameter	Description	Condition		Min	Max	Unit
V ${ }_{\text {DD }}$	2.5 Operating Voltage	$2.5 \mathrm{~V} \pm 5 \%$		2.375	2.625	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	REF, FB and sOE\# Inputs		-	0.7	V
V_{IH}	Input HIGH Voltage			1.7	-	V
$\mathrm{V}_{1 \mathrm{HH}}{ }^{[9]}$	Input HIGH Voltage	3-Level Inputs (TEST, FS, nF[1:0], PE/HD) (These pins are normally wired to V_{DD}, GND or unconnected.)		$\mathrm{V}_{\mathrm{DD}}-0.4$	-	V
$\mathrm{V}_{\mathrm{IMM}}{ }^{[9]}$	Input MID Voltage			$\mathrm{V}_{\mathrm{DD}} / 2-0.2$	$\mathrm{V}_{\mathrm{DD}} / 2+0.2$	V
$\mathrm{V}_{\text {ILL }}{ }^{\text {9] }}$	Input LOW Voltage			-	0.4	V
$\mathrm{I}_{\text {IL }}$	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{DD}} / \mathrm{G}_{\mathrm{ND}}, \\ & \mathrm{~V}_{\mathrm{DD}}=\max . \text { (REF and } \mathrm{FB} \text { inputs) } \end{aligned}$		-5	5	$\mu \mathrm{A}$
I_{3}	3-Level Input DC Current	HIGH, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	3-Level Inputs (TEST, FS, nF[1:0], DS[1:0], PD\#/DIV, PE/HD)	-	200	$\mu \mathrm{A}$
		MID, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} / 2$		-50	50	$\mu \mathrm{A}$
		LOW, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		-200	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {PU }}$	Input Pull-up Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=\max$.		-25	-	$\mu \mathrm{A}$
	Input Pull-down Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=$ max., (sOE\#)		-	100	$\mu \mathrm{A}$
V_{OL}	Output LOW Voltage	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$		-	0.4	V
		$\mathrm{l}_{\mathrm{OL}}=20 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}),(\mathrm{nQ}[0: 1])$		-	0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{l}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$		2.0	-	V
		$\mathrm{l}_{\mathrm{OH}}=-20 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}),(\mathrm{nQ}[0: 1])$		2.0	-	V
$\mathrm{I}_{\mathrm{DDQ}}$	Quiescent Supply Current	$\mathrm{V}_{\mathrm{DD}}=$ max., TEST = MID, REF = LOW, sOE\# = LOW, outputs not loaded		-	2	mA
IDD	Dynamic Supply Current	At 100 MHz		150		mA
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance			4		pF

[^1]
DC Specifications at 3.3V

Parameter	Description	Condition		Min	Max	Unit
$V_{\text {DD }}$	3.3 Operating Voltage	$3.3 \mathrm{~V} \pm 10 \%$		2.97	3.63	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	REF, FB and sOE\# Inputs		-	0.8	V
V_{IH}	Input HIGH Voltage			2.0	-	V
$\mathrm{V}_{\mathrm{IHH}}{ }^{[9]}$	Input HIGH Voltage	3-Level Inputs (TEST, FS, nF[1:0], PE/HD) (These pins are normally wired to V_{DD}, GND or unconected.)		$\mathrm{V}_{\mathrm{DD}}-0.6$	-	V
$\mathrm{V}_{\text {IMM }}{ }^{[9]}$	Input MID Voltage			$\mathrm{V}_{\mathrm{DD}} / 2-0.3$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}} / 2+ \\ 0.3 \end{gathered}$	V
$\mathrm{V}_{\text {ILL }}{ }^{\text {9] }}$	Input LOW Voltage			-	0.6	V
ILL	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} / \mathrm{G}_{\mathrm{ND}}, \mathrm{~V}_{\mathrm{L}} \\ & \text { inputs) } \end{aligned}$	= max. (REF and FB	-5	5	$\mu \mathrm{A}$
I_{3}	3-Level Input DC Current	HIGH, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	3-Level Inputs (TEST, FS, nF[1:0], DS[1:0], PD\#/DIV, PE/HD)	-	200	$\mu \mathrm{A}$
		MID, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}} / 2$		-50	50	$\mu \mathrm{A}$
		LOW, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$		-200	-	$\mu \mathrm{A}$
$\mathrm{I}_{\text {PU }}$	Input Pull-up Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=\max$.		-100	-	$\mu \mathrm{A}$
IPD	Input Pull-down Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=$ max., (sOE\#)		-	100	$\mu \mathrm{A}$
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$		-	0.4	V
		$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}),(\mathrm{nQ}[0: 1])$		-	0.4	V
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{L} / \mathrm{H}),(\mathrm{nQ}[0: 1])$		2.4	-	V
		$\mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}(\mathrm{PE} / \mathrm{HD}=\mathrm{MID}),(\mathrm{nQ}[0: 1])$		2.4	-	V
IDDQ	Quiescent Supply Current	$\mathrm{V}_{\mathrm{DD}}=$ max., TEST = MID, REF = LOW, sOE\# = LOW, outputs not loaded		-	2	mA
I_{DD}	Dynamic Supply Current	At 100 MHz		230		mA
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance			4		pF

AC Test Loads and Waveforms

Figure 2. AC Test Loads

Figure 3. Output Waveforms

Figure 4. Test Waveforms

AC Input Specifications

Parameter	Description	Condition	Min	Max	Unit
$\mathrm{T}_{\mathrm{R}}, \mathrm{T}_{\mathrm{F}}$	Input Rise/Fall Time	0.8V-2.0V	-	10	ns/V
$\mathrm{T}_{\text {PWC }}$	Input Clock Pulse	HIGH or LOW	2	-	ns
$\mathrm{T}_{\text {DCIN }}$	Input Duty Cycle		10	90	\%
$\mathrm{F}_{\text {REF }}$	Reference Input Frequency	FS = LOW	6	50	MHz
		FS = MID	12	100	
		FS $=\mathrm{HIGH}$	24	200	

Switching Characteristics

Parameter	Description	Condition	Min	Typ	Max	Unit
$\mathrm{F}_{\text {OR }}$	Output Frequency Range		6	-	200	MHz
$\mathrm{VCO}_{\text {LR }}$	VCO Lock Range		200	-	400	MHz
$\mathrm{VCO}_{\text {LBW }}$	VCO Loop Bandwidth		0.25	-	3.5	MHz
$\mathrm{t}_{\text {SKEWPR }}$	Matched-Pair Skew ${ }^{[10]}$	Skew between the earliest and the latest output transitions within the same bank.	-	50	100	ps
${ }_{\text {tSKEWO }}$	Output-Output Skew ${ }^{[10]}$	Skew between the earliest and the latest output transitions among all outputs at Ot_{U}.	-	100	200	ps
$\mathrm{t}_{\text {SKEW1 }}$		Skew between the earliest and the latest output transitions among all outputs for which the same phase delay has been selected.	-	100	200	ps
$\mathrm{t}_{\text {SKEW2 }}$		Skew between the nominal output rising edge to the inverted output falling edge.	-	-	500	ps
$\mathrm{t}_{\text {SKEW3 }}$	Output-Output Skew ${ }^{[10]}$	Skew between non-inverted outputs running at different frequencies.	-	-	500	ps
$\mathrm{t}_{\text {SKEW4 }}$		Skew between nominal to inverted outputs running at different frequencies.	-	-	500	ps
$\mathrm{t}_{\text {SKEW5 }}$		Skew between nominal outputs at different power supply levels.	-	-	650	ps
$\mathrm{t}_{\text {PART }}$	Part-Part Skew	Skew between the outputs of any two devices under identical settings and conditions ($\mathrm{V}_{\mathrm{DDQ}}, \mathrm{V}_{\mathrm{DD}}$,temp, air flow, frequency, etc.).	-	-	750	ps
$\mathrm{t}_{\text {PDO }}$	$\begin{array}{\|l} \text { Ref-FB Propagation } \\ \text { Delay } \end{array}$		-250	-	+250	ps
todcv	Output Duty Cycle	Fout < 100 MHz , measured at $\mathrm{V}_{\mathrm{DD}} / 2$	48	$\begin{aligned} & 49.5 / \\ & 50.5 \end{aligned}$	52	\%
		Fout > 100 MHz , measured at $\mathrm{V}_{\mathrm{DD}} / 2$	45	$\begin{aligned} & \hline 48 / \\ & 52 \end{aligned}$	55	
$t_{\text {PWH }}$	Output High Time Deviation from 50\%	Measured at 2.0 V for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and at 1.7 V for $\mathrm{V}_{\mathrm{DD}}=$ 2.5 V .	-	-	1.5	ns
$t_{\text {PWL }}$	Output Low Time Deviation from 50\%	Measured at 0.8 V for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and at 0.7 V for $\mathrm{V}_{\mathrm{DD}}=$ 2.5 V .	-	-	2.0	ns
$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$	Output Rise/Fall Time	$\begin{aligned} & \text { Measured at } 0.8 \mathrm{~V}-2.0 \mathrm{~V} \text { for } \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \text { and } 0.7 \mathrm{~V}-1.7 \mathrm{~V} \\ & \text { for } \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text {. } \end{aligned}$	0.15	-	1.5	ns
t ${ }_{\text {LOCK }}$	PLL lock time ${ }^{[12,13]}$		-	-	0.5	ms
$\mathrm{t}_{\mathrm{CCJ}}$	Cycle-Cycle Jitter	Divide by one output frequency, FS = L, FB = divide by 1, 2, 4.	-	50	100	ps
		Divide by one output frequency, FS = M/H, FB = divide by $1,2,4$.	-	70	150	ps

[^2]CY7B9950

AC Timing Definitions

Figure 5. Timing Definitions

Ordering Information

Part Number	Package Type	Product Flow	Status	
CY7B9950AC	32 TQFP	Commercial, 0° to $70^{\circ} \mathrm{C}$	Not for new design	
CY7B9950ACT	32 TQFP - Tape and Reel	Commercial, 0° to $70^{\circ} \mathrm{C}$	Not for new design	
CY7B9950AI	32 TQFP	Industrial, -40° to $85^{\circ} \mathrm{C}$	Not for new design	
CY7B9950AIT	32 TQFP - Tape and Reel	Industrial, -40° to $85^{\circ} \mathrm{C}$	Not for new design	
Pb-free				
CY7B9950AXC	32 TQFP	Commercial, 0° to $70^{\circ} \mathrm{C}$	Active	
CY7B9950V-5AXC	32 TQFP	Commercial, 0° to $70^{\circ} \mathrm{C}$	Active	
CY7B9950AXCT	32 TQFP - Tape and Reel	Commercial, 0° to $70^{\circ} \mathrm{C}$	Active	
CY7B9950AXI	32 TQFP	Industrial, -40° to $85^{\circ} \mathrm{C}$	Active	
CY7B9950AXIT	32 TQFP - Tape and Reel	Industrial, -40° to $85^{\circ} \mathrm{C}$	Active	

Package Drawing and Dimension

Figure 6. 32-lead Thin Plastic Quad Flatpack $7 \times 7 \times 1.0 \mathrm{~mm}$ A32

Document History Page

Document Title: RoboClock ${ }^{\circledR}$ CY7B9950 2.5/3.3V, 200 MHz High-Speed Multi-Phase PLL Clock Buffer Document Number: 38-07338				
Rev.	ECN No.	Issue Date	Orig. of Change	Description of Change
**	121663	11/25/02	RGL	New Data Sheet
*A	122548	12/12/02	RGL	Removed the PD\#/DIV and DS[1:0] pins in $\mathrm{V}_{\text {IHH }}, \mathrm{V}_{\text {IMM }}$ and $\mathrm{V}_{\text {ILL }}$ for both 2.5 V and 3.3V DC Electrical Specs tables
*B	124646	03/05/03	RGL	Corrected the description of Pin 27(TEST) in the Pin Description table Corrected the description of Pin $12\left(\mathrm{~V}_{\mathrm{DDQ}}\right)$ in the Pin Description table Corrected the Min and Max values of V_{DD} from 2.25/2.75 to 2.375/2.625 Volts in the Absolute Maximum Conditions table
*C	433662	See ECN	RGL	Added Lead-free devices Added Jitter typical values
*D	1562063	See ECN	PYG/AESA	Added Lead-free CY7B9940V-5AXC to Ordering Information Added Status column to Ordering Information table

© Cypress Semiconductor Corporation, 2002-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[^0]: Notes

 1. "PD" indicates an internal pull-down and "PU" indicates an internal pull-up. " 3 " indicates a three-level input buffer
 2. A bypass capacitor $(0.1 \mu \mathrm{~F})$ must be placed as close as possible to each positive power pin (<0.2 "). If these bypass capacitors are not close to the pins their high-frequency filtering characteristic are cancelled by the lead inductance of the traces.
 3. When TEST $=$ MID and $\operatorname{sOE} \#=$ HIGH, PLL remains active with $n F[1: 0]=$ LL functioning as an output disable control for individual output banks. Skew selections remain in effect unless $\mathrm{nF}[1: 0]=\mathrm{LL}$.
 4. These states are used to program the phase of the respective banks (see Table 6 on page 4).
[^1]: Note
 9. These inputs are normally wired to V_{DD}, GND or unconnected. Internal termination resistors bias unconnected inputs to $\mathrm{V}_{\mathrm{DD}} / 2$.

[^2]: Note
 10. Test load $=20 \mathrm{pF}$, terminated to $\mathrm{V}_{\mathrm{CC}} / 2$. All outputs are equally loaded.
 11. t_{PD} is measured at 1.5 V for $\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$ and at 1.25 V for $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ with REF rise/fall times of 0.5 ns between $0.8 \mathrm{~V}-2.0 \mathrm{~V}$.
 12. $t_{\text {LOCK }}$ is the time that is required before outputs synchronize to REF. This specification is valid with stable power supplies which are within normal operating limits.
 13. Lock detector circuit may be unreliable for input frequencies lower than 4 MHz , or for input signals which contain significant jitter.

